9702_m16_qp_42.pdf

of 24
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Documents

Published:

Views: 23 | Pages: 24

Extension: PDF | Download: 0

Share
Description
Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level * 8 9 6 5 6 0 8 0 0 4 * PHYSICS 9702/42 Paper 4 A Level Structured Questions February/March 2016
Tags
Transcript
  This document consists of 24  printed pages. DC (NH/SW) 107972/4 © UCLES 2016 [Turn over * 8 9 6 5 6 0 8 0 04* PHYSICS   9702/42 Paper 4 A Level Structured Questions February/March 2016   2 hours Candidates answer on the Question Paper.No Additional Materials are required. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams or graphs.Do not use staples, paper clips, glue or correction fluid.DO NOT  WRITE IN ANY BARCODES.Answer all  questions.Electronic calculators may be used.You may lose marks if you do not show your working or if you do not use appropriate units.At the end of the examination, fasten all your work securely together.The number of marks is given in brackets [ ] at the end of each question or part question. Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level For Examiner’s Use 1 2 3 4 5 6 7 8 910111213Total  2 9702/42/F/M/16 © UCLES 2016 Data speed of light in free space c = 3.00 × 10 8  m s −1 permeability of free space μ  0   = 4 π  × 10 −7  H m −1 permittivity of free space ε  0   = 8.85 × 10 −12  F m −1  (14 π ε  0  = 8.99 × 10 9  m F −1 ) elementary charge e = 1.60 × 10 −19  Cthe Planck constant h = 6.63 × 10 −34  J sunified atomic mass unit 1 u   = 1.66 × 10 −27  kgrest mass of electron m  e   = 9.11 × 10 −31  kgrest mass of proton m  p   = 1.67 × 10 −27  kgmolar gas constant R = 8.31 J K −1  mol −1 the Avogadro constant N  A   = 6.02 × 10 23  mol −1 the Boltzmann constant k = 1.38 × 10 −23  J K −1 gravitational constant G = 6.67 × 10 −11  N m 2  kg −2 acceleration of free fall g = 9.81 m s −2  3 9702/42/F/M/16 © UCLES 2016 [Turn overFormulae uniformly accelerated motion s   = ut + 12   at  2   v  2  = u  2   +   2 as  work done on/by a gas W   = p  Δ V  gravitational potential φ   = −  Gm r  hydrostatic pressure p   = ρ  gh  pressure of an ideal gas p   = 13   Nm V   〈 c  2 〉 simple harmonic motion a   = − ω    2 x  velocity of particle in s.h.m. v   = v  0  cos ω  t    v   = ± ω     √⎯⎯⎯⎯⎯⎯⎯⎯⎯ ( x  02  – x  2 )Doppler effect f  o  = f  s v v   ± v  s electric potential V   = Q  4 π ε  0 r  capacitors in series 1/  C   = 1/  C  1  + 1/  C  2  + . . .capacitors in parallel C   = C  1  + C  2  + . . .energy of charged capacitor W   = 12   QV  electric current I   = Anvq  resistors in series R   = R  1  + R  2  + . . .resistors in parallel 1/  R   = 1/  R  1  + 1/  R  2  + . . .Hall voltage V  H  = B  I  ntq  alternating current/voltage x   = x  0  sin ω    t  radioactive decay x   = x  0  exp(− λ  t  )decay constant λ   = 0.693 t  12  4 9702/42/F/M/16 © UCLES 2016 Answer all  the questions in the spaces provided. 1 (a) State Newton’s law of gravitation. ................................................................................................................................................... ................................................................................................................................................... ................................................................................................................................................... ...............................................................................................................................................[2]  (b) A satellite of mass m   has a circular orbit of radius r   about a planet of mass M  . It may be assumed that the planet and the satellite are uniform spheres that are isolated in space.   Show that the linear speed v   of the satellite is given by the expression GM r v   =   where G   is the gravitational constant.   Explain your working. [2]  (c) Two moons A and B have circular orbits about a planet, as illustrated in Fig. 1.1. BAplanet v  A v  B r  B r  A Fig. 1.1  (not to scale)   Moon A has an orbital radius r  A  of 1.3 × 10 8  m, linear speed v  A  and orbital period T  A .   Moon B has an orbital radius r  B  of 2.2 × 10 10  m, linear speed v  B  and orbital period T  B .
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks