Time Monitoring Observations of SiO J = 2-1 and J = 3-2 Maser Emission toward Late-Type Stars

of 26
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Data & Analytics

Published:

Views: 25 | Pages: 26

Extension: PDF | Download: 0

Share
Description
Time Monitoring Observations of SiO J = 2-1 and J = 3-2 Maser Emission toward Late-Type Stars
Tags
Transcript
  TIME MONITORING OBSERVATIONS OF SiO  J   = 2  Y  1 AND  J   = 3  Y  2 MASER EMISSIONTOWARD LATE-TYPE STARS Jina Kang, 1 Se-Hyung Cho, 1 Hyun-Goo Kim, 1 Hyun-Soo Chung, 1 Hyo-Ryung Kim, 1 Duk-Gyoo Roh, 1 Chang-Won Lee, 1 and Sang-Joon Kim 2  Recei v  ed 2004 No v  ember 9; accepted 2006 March 21 ABSTRACTWe present theresults of simultaneous time monitoring observations of SiO  J   ¼ 2  Y  1and  J   ¼ 3  Y  2 maser emissionfor10late-typestars(8Miravariables,1OH/IRstar,and1supergiant)withthe14mradiotelescopeatTaedukRadioAstronomy Observatory from 1999 January to 2001 February. The SiO  v  ¼ 1,  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 maser emissionwas detected at almost all observational epochs. The SiO  v  ¼ 2,  J   ¼ 2  Y  1 maser was detected from 4 late-type stars(VY CMa, R Cas,    Cyg, R Leo) and the  v  ¼ 2,  J   ¼ 3  Y  2 maser was detected from 7 stars (R Aqr, TX Cam, R Cas,  Cyg,WHya,RLeo,IKTau).The v  ¼ 3,  J   ¼ 2  Y  1and  J   ¼ 3  Y  2maserswerealsodetectedfrom  CygandTXCam,respectively. Based on these observational data, line profile and peak velocity variations with respect to stellar ve-locity, antenna temperatures, and their ratio variations as a function of optical phase of central star were investigated.As main results,theline profile andthe peakvelocity variationof the  v  ¼ 1,  J   ¼ 3  Y  2maser withpulsationphasewasfoundtodifferfromthe v  ¼ 1,  J   ¼ 2  Y  1transition.Similarly,the  J   ¼ 2  Y  1and  J   ¼ 3  Y  2transitionsalsodifferbetweenrovibrational transitions ata givenpulsation phase. However,itisdifficulttofind significantcorrelations between the peak velocity variation relative to the stellar velocity of either the  J   ¼ 3  Y  2 or   J   ¼ 2  Y  1 transitions over pulsation phase, due to limited time sampling in these data. The peak and integrated antenna temperature (PT and IT) ratiosamong rotational ladders and vibrational states are investigated. These ratios between rotational ladders of the  v  ¼ 1,  J   ¼ 2  Y  1,and  J   ¼ 3  Y  2masersareaveragedtobethepeakantennatemperatureratio,PT( v  ¼ 1 ;  J   ¼ 3  Y  2)/PT( v  ¼ 1 ;  J   ¼ 2  Y  1)  0 : 29, and the integrated antenna temperature ratio, IT( v  ¼ 1 ;  J   ¼ 3  Y  2)/IT( v  ¼ 1 ;  J   ¼ 2  Y  1)  0 : 21, re-spectively. In the  v  ¼ 2 state, these ratios are PT( v  ¼ 2 ;  J   ¼ 3  Y  2) = PT( v  ¼ 2 ;  J   ¼ 2  Y  1)  7 : 94 and IT( v  ¼ 2 ;  J   ¼ 3  Y  2)/IT( v  ¼ 2 ;  J   ¼ 2  Y  1)  8 : 50, respectively. The peak and integrated antenna temperature ratios between vibra-tionalstatesarealsoaveragedtobePT( v  ¼ 2 ;  J   ¼ 3  Y  2)/PT( v  ¼ 1 ;  J   ¼ 3  Y  2)  1 : 29,IT( v  ¼ 2 ;  J   ¼ 3  Y  2)/IT( v  ¼ 1 ;  J   ¼ 3  Y  2)  1 : 02,PT( v  ¼ 2 ;  J   ¼ 2  Y  1)/PT( v  ¼ 1 ;  J   ¼ 2  Y  1)  0 : 06,andIT( v  ¼ 2 ;  J   ¼ 2  Y  1)/IT( v  ¼ 1 ;  J   ¼ 2  Y  1)  0 : 05, respectively.Theseintensity ratiosforthe v  ¼ 2,  J   ¼ 2  Y  1and v  ¼ 2,  J   ¼ 3  Y  2masers suggestthat lineoverlapsoperating in the  v  ¼ 2,  J   ¼ 2  Y  1 transition do not similarly affect the  v  ¼ 2,  J   ¼ 3  Y  2 transition. Subject headin g   g  s:  circumstellar matter — masers — stars: late-type — stars: oscillations Online material:  machine-readable tables1. INTRODUCTIONThe first detection of SiO maser was achieved by Snyder &Buhl (1974) toward the star-forming region Orion KL and byKaifu et al. (1975) toward late-type stars. Thereafter, more than500 late-type stars and several star-forming regions have beenfound to emit maser emission in various SiO transitions (Jewellet al. 1991; Cernicharo & Bujarrabal 1992; Elitzur 1992; Choet al. 1996a, Humphreys et al. 1997). The SiO maser emission isacommonpropertyofoxygen-richasymptoticgiantbranch(AGB)stars,e.g.,Miravariables,Semiregularvariables,andOH/IRstars,which are hard to identify optically because of their thick dust envelopes.TheSiOmasersfromAGBstarsplayanimportantroleintrac-ingthephysicalprocessesintheinnermostatmosphericregionof the circumstellar envelope; this region is dominated by the mass-lossprocessandpervadedbypropagatingshockwavesassociatedwith stellar pulsations.Time monitoring observations of SiO masers have been made by many investigators. The first systematic study was made byHjalmason & Olofsson (1979). They observed the  v  ¼ 1,  J   ¼ 2  Y  1 transition toward the Mira variables o Cet and R Leo, anda star-forming region Orion KL. This work was continued by Nyman & Olofsson (1986). Further observations were made by Lane (1982), who observed 10 Mira variables, 2 supergiants,and Orion KL over a period of approximately 2 yr in the transi-tions  v  ¼ 1,  J   ¼ 1  Y  0,  J   ¼ 2  Y  1 and  v  ¼ 2,  J   ¼ 1  Y  0. In addition,Martinez et al. (1988) also described more complete and sys-tematic monitoring of SiO masers ( v  ¼ 1, 2,  J   ¼ 1  Y  0) than prior studies. For Mira variables, they reported a good correlation betweentheSiOfluxvariationandthelightcurveofthehoststar with a phase lag of the SiO intensity maxima of 0.1  Y  0.2 relativeto the visual maxima. The SiO light curves were not found to bestrongly reproducible over time. Recently, Alcolea et al. (1999)and Pardo et al. (2004) have reported the results of 6 and 11 yr, re-spectively,ofshort-spacedmonitoringobservationstowardevolvedstars. They have confirmed that the SiO masers appear to vary periodically,withaperiodequaltothatintheoptical,andwithanSiO-optical phase-lag in good agreement with previous moni-toring studies. They also showed that the SiO masers vary sys-tematically in phase with the near-infrared emission, suggestingradiativepumping.However,theydidnotfind anyperiodicityor trend in the shape and centroid of the line profiles. Recent multi-epochVeryLongBaselineArray(VLBA)observations(Diamond& Kemball 2003; Yi et al. 2005) show that the diameter of thesynthetic maser ring is dependent on stellar phase and on maser  1 Taeduk Radio Astronomy Observatoy, Korea Astronomy and Space Sci-ence Institute, San 36-1, Hwaam-Dong, Yusong-Gu, Daejon 305-348, Korea;cdiem@chol.com,cho@kasi.re.kr,hschung@trao.re.kr,hgkim@trao.re.kr,hrkim@trao.re.kr, dgroh@trao.re.kr, cwl@kasi.re.kr. 2 Department of Astronomy and Space Science, Kyung Hee University,Suwon, Korea; sjkim1@khu.ac.kr. A  360 The Astrophysical Journal Supplement Series , 165:360  Y  385, 2006 July Copyright is not claimed for this article. Printed in U.S.A.  transition broadly consistent with the model of Humphreys et al.(2002). The VLBA observation of Boboltz et al. (1997) andDiamond & Kemball (2003) allow the gas motion in the ex-tended atmosphere to be traced and compared with single-dishstudies.Cho et al. (1996b) noted that the line formation region of thevibrationally excited SiO  J   ¼ 1  Y  0 masers is affected by the stel-larpulsationbasedonalarge-scalestatisticalsingle-dishstudyof SiO  J   ¼ 1  Y  0masers.Theyproposedthataroundphase0.2shock waves may play an important role in producing the maximumflux of the SiO  v  ¼ 1, 2 masers and the appearance of the  v  ¼ 3maser. They also reported that the peak and mean velocities of the  v  ¼ 1, 2,  J   ¼ 1  Y  0 SiO masers varied with the stellar optical phase, the redshifted emission being dominant between phases0.3and0.8,suggestingthatinfallinggasareresponsiblefortheseemission. These peak and mean velocity patterns are also ob-tained from the high-frequency SiO data at >200 GHz of Grayet al. (1999). However, this does not agree with VLBA observa-tionsofthepropermotionsof  v  ¼ 1,  J   ¼ 1  Y  0SiOmaserstowardthe symbiotic Mira R Aqr (Boboltz et al. 1997). Detailed obser-vational studies are required to establish the nature of kinemat-icaleffectsduetothestellarpulsationintheatmospheresofMiravariables. In addition, upto now,these time monitoring observa-tions were limited to the SiO  J   ¼ 1  Y  0 and  J   ¼ 2  Y  1 transitions.Cho et al. (1998) have performed an SiO  J   ¼ 3  Y  2 line surveytoward late-type stars with the 14 m radio telescope at Taeduk RadioAstronomyObservatory(TRAO)andobtainedalargenum- berofSiO  J   ¼ 3  Y  2masersources.Therefore,wecanmakesimul-taneous time monitoring observations of   J   ¼ 2  Y  1 and  J   ¼ 3  Y  2transitions of selected stars based on these observations. In par-ticular, the observational results for the  J   ¼ 3  Y  2 masers, whichhave not previously been studied systematically, must be com- pared with trends that are derived from  J   ¼ 1  Y  0 and  J   ¼ 2  Y  1masers. This paper is arranged as follows. The observations aredescribed in x 2. The results and discussion are presented in xx 3and 4, respectively. The summary is given in x 5.2. OBSERVATIONSWe have carried out simultaneous time monitoring observa-tions of SiO  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 maser emission for 10 late-typestarswiththe14mradiotelescopeatTRAO(Daejon,Korea)from1999Januaryto2001February.Thedetailobservingepochswere 1999 January, March, April, May, and December, 2000February, March, April, May, and December, and 2001 JanuaryandFebruary. Owing to the summerseasonscheduleand weather conditions, data could not always be taken at the allocated1 month intervals. The observations were not performed for TX Cam and VY CMa in 1999 March and December, and for WX Psc, o Cet, and IK Tau in 2000 May due to receiver prob-lems.WeobservedsixSiO v  ¼ 1,2,and3,  J   ¼ 2  Y  1and  J   ¼ 3  Y  2transitions, which are listed in Table 1, together with their rest frequencies from Lovas (1992). Each pair of   J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 SiO transitions for   v  ¼ 1, 2, and 3 were observed simulta-neouslyusingtheTRAO100/150GHz dual-channelSISreceiver (Park et al. 1999). This receiver has a vertical, linearly polarizedfeed. Basically,  v  ¼ 1, 2,  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 pairs were ob-served for each source at each epoch by simultaneously settingthe dual channel receiver to 100/150 GHz. However, the  v  ¼ 3,  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 pair was observed only for the  v  ¼ 2,  J   ¼ 2  Y  1 and/or   J   ¼ 3  Y  2 detected objects: R Aqr, TX Cam, VYCMa, R Cas,    Cyg, W Hya, R Leo, and IK Tau. The HPBWsand the aperture efficiencies of the telescope are approximately50 00 and 37% at 86 GHz, and 40 00 and 33% at 128 GHz, respec-tively.Thesinglesideband(SSB)systemnoisetemperaturerangedfrom200to400Kat100GHz,andfrom400to800Kat150GHz.The pointing was checked using a strong SiO  v  ¼ 1,  J   ¼ 2  Y  1maser emission to within an rms accuracy of 6 00 . The relative pointing accuracy between 100 and 150 GHz receivers was fixedwithin2 00 frombeamalignmentexperiments.Thebestfocusofthesecondary mirror was obtained at the start of each observation.We used a 256 channel  ;  250 kHz filter bank with a velocityresolutionof0.86kms  1 at86GHzand0.58kms  1 at128GHzforsixSiO  J   ¼ 2  Y  1and  J   ¼ 3  Y  2transitionsasamainspectrom-eter. We also used a 256 channel  ;  1 MHz filter band as a com- plementaryspectrometer.Thedatawerecalibratedbythechopper wheel method in which the atmospheric attenuation and radomelosses were corrected, to yield  T    A . Integration time was 30  Y  60 minutes to achieve 0.05 K rms at 3     level. The correctedantennatemperature T    A  isrelatedtofluxdensityby1 K   54 Jyat86GHzand1 K   62 Jyat128GHz,respectively.The10stron-gest late-type stars of SiO maser emission based on the result of the  J   ¼ 3  Y  2 survey by Cho et al. (1998) were selected for timemonitoring observations. They include 9 Mira variables (R Aqr,TX Cam, R Cas, o Cet,    Cyg, R Leo, WX Psc, IK Tau, andW Hya) and 1 supergiant (VY CMa). The list of monitoring ob- jects and their properties with references are given in Table 2.3. RESULTSThe SiO  v  ¼ 1,  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 maser emission for 10late-type stars was detected at almost all observational epochsfrom 1999 January to 2001 February. The SiO  v  ¼ 2,  J   ¼ 2  Y  1maser emission was detected toward 4 late-type stars (VY CMa,R Cas,    Cyg, R Leo). SiO  v  ¼ 2,  J   ¼ 3  Y  2 maser emission wasdetectedtoward7late-typestars(RAqr,TXCam,RCas,  Cyg,WHya,RLeo,IKTau).SiO v  ¼ 3,  J   ¼ 2  Y  1maseremissionwasdetected for the first time toward    Cyg at phases 0.21 and 0.27in 2000 March and April as the  v  ¼ 3,  J   ¼ 2  Y  1 source, whichwill be published in a separate paper (S.-H. Cho et al. 2006, in preparation), and SiO  v  ¼ 3,  J   ¼ 3  Y  2 maser emission was de-tected only toward TX Cam at phase 0.96 of 1999 April.Tables 3 and 4 summarize the result of time monitoring ob-servationsoftheSiO v  ¼ 1,2,3,  J   ¼ 2  Y  1and  J   ¼ 3  Y  2transitionfor10late-typestars.Thecolumns(1)and(2)arethenameofthestar and the observed transition. Columns (3)  Y  (6) are the peak antenna temperature of each transition, rms, integrated antennatemperature, and the  V  LSR  (peak), i.e., the radial velocity of the peak emission with respect to the local standard of rest, respec-tively. The radial velocity of the peak emission with respect tothestellarvelocity, V  LSR  (peak)  V   ,isgivenincolumn(7).Thedate of observation with the corresponding phase of the opticallightcurveisgivenincolumn(8).Thephaseswerecalculatedfromthe optical data providedbytheAmericanAssociationofVariableStarObservations(J.A.Mattei2002,privatecommunication).We TABLE  1 S i O Transitions and Rest Frequencies Used for Observations TransitionFrequency a  (GHz) v   = 1,  J   = 2  Y  1...................................................... 86.243442 v   = 2,  J   = 2  Y  1...................................................... 85.640456 v   = 3,  J   = 2  Y  1...................................................... 85.038010 v   = 1,  J   = 3  Y  2...................................................... 129.36337 v   = 2,  J   = 3  Y  2...................................................... 128.45889 v   = 3,  J   = 3  Y  2...................................................... 127.55524 a  Rest frequencies from Lovas (1992). TIME MONITORING OBSERVATIONS OF SiO 361  could not obtain the optical phases of the WX Psc and VY CMa because they are irregular variables.Figure 1 presents the individual SiO spectra of time monitor-ing observations for 10 sources in the SiO  v  ¼ 1, 2, 3,  J   ¼ 2  Y  1and  J   ¼ 3  Y  2 transitions. Spectra are arranged in order as showninTables3and4.Thenameofthestarandthetransition,thedateof observation, and the optical phase are indicated on each spec-trum. Avertical line marks the radial velocity of the central star, V   , shown in Table 2.TheavailableCO  v  ¼ 3(1.6  m)velocitycurve(Hinkleetal.1984) related to stellar pulsation in Mira variables is presented at the top of Figure 2 for comparison with SiO peak velocity pat-terns,althoughtheCO  v  ¼ 3lineoriginatesinthephotosphererelative to the radius of the SiO masers, 1.5  Y  4.0 stellar radius(Boboltzetal.1997;Yietal.2005),andtheCO  v  ¼ 3infrareddata are not contemporaneous with the SiO data. In Figure 3, we present the integrated antenna temperature variations of SiO ma-ser emission and the integrated antenna temperature ratios be-tween SiO  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 emission with respect to stellar opticalphases.Theopticalmagnitudevariationsareobtainedfromthe American Association of Variable Star Observers (AAVSO)InternationalDatabase(J.A.Mattei2002,privatecommunication).4. DISCUSSION4.1.  Characteristics of Indi v  idual Stars We discuss the obtained data, object by object, based on thespectraofsimultaneoustimemonitoringobservations ofthe  J   ¼ 2  Y  1and  J   ¼ 3  Y  2transitions(Fig.1),peakvelocityvariationpat-terns of SiO  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 masers with respect to thestellar velocity as a function of phase for each source (Fig. 2),andintegratedantennatemperaturevariationsandpeak/integratedantenna temperature ratios between  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 ma-sers versus optical phase (Fig. 3). The stellar velocities used inFigures1and2aregiveninTable2withreferences.Basicstellar  properties for each source are from Engels (1979) and Kholopovet al. (1985) (Table 2). As shown in Figures 2 and 3, the timesampling of the SiO data is too limited to draw significant con-clusions about variation with stellar pulsation phase. Therefore,wepresent here the main characteristics of the time variability of each source. 4.1.1.  R Aqr  R Aqr is a symbiotic stellar system, consisting of a Mira var-iable and a hot dwarf companion surrounded by an expandingnebula (Henny & Dyson 1992). Recent VLBI observations of RAqr (Boboltz etal.1997)haveshown thatthemaserring hasaradius of 1.9  R  , where 1.9  R   is the stellar photospheric radius,and have also allowed the detection of circumstellar SiO maser  proper motions.We presented the  v  ¼ 1,  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 lines of timemonitoringobservationsandthedetected v  ¼ 2,  J   ¼ 3  Y  2spectrafor R Aqr in Figure 1. The radial velocity of the peak SiO  v  ¼ 1,  J   ¼ 2  Y  1 emission was redshifted during optical phases   ¼ 0 : 67  Y  1 : 0 and   ¼ 1 : 5  Y  2 : 0 (from 1999 September to 2000 May)and blueshifted during optical phases  ¼ 2 : 46  Y  2 : 63 (from 2000December to 2001 February), while that of SiO  v  ¼ 1,  J   ¼ 3  Y  2was redshifted during the entire period shown in Figure 2. Inaddition, a blueshifted maser spike beside the main peak com- ponent in the SiO  v  ¼ 1,  J   ¼ 2  Y  1 maser emission appeared at  phases0.82and0.90inFigure1,whilethisspikecomponentdidnot appear in the  J   ¼ 3  Y  2 maser emission. These facts suggest that line formation region of the  v  ¼ 1,  J   ¼ 2  Y  1 line may be dif-ferent from that of the  v  ¼ 1,  J   ¼ 3  Y  2 line and the peak velocitymotion of   J   ¼ 2  Y  1 may be also different from that of   J   ¼ 3  Y  2 at a certain phase. The integrated antenna temperature variation of  v  ¼ 1,  J   ¼ 2  Y  1 and  J   ¼ 3  Y  2 lines and antenna temperature ratio between  J   ¼ 2  Y  1and  J   ¼ 3  Y  2lineswithrespecttoopticalphase TABLE  2 Observed Sources  Name (Type)(1)R.A. (B1950)(2)Decl. (B1950)(3) V  * (km s  1 )(4)SpectralType(5)Distance(pc)(6)Period(days)(7)R Aqr (M)......................................... 23 41 14.3   15 33 42   25.4 a  M5  Y  M9 197    100 387.0TX Cam (M)..................................... 04 56 43.0 +56 06 47 8.9  b M8  Y  M10 696 c 557.4VY CMa (SG) ................................... 07 20 54.7   25 40 12 20.5 d M5 1400    200 e R Cas (M)......................................... 23 55 51.7 +51 06 36 26.0  b M6  Y  M10 107    13 430.5o Cet (M).......................................... 23 55 51.7 +51 06 36 46.3 f  M5  Y  M9 128    18 332.0   Cyg (M)......................................... 19 48 38.5 +32 47 12 12.0 g S6  Y  S10 106    15 408.0W Hya (SR)....................................... 13 46 12.0   28 07 09 40.0 d M7  Y  M9 115    14 361.0R Leo (M)......................................... 09 44 52.2 +11 39 40 40.0 h M6  Y  M10 101    21 310.0WX Psc (OH/IR) .............................. 01 03 48.1 +12 19 51.4 8.0 d M8 520    21 i 650.0IK Tau (M)........................................ 03 50 43.8 +11 58 32 34.0 d M6  Y  M10 270  j 470.0 Notes.— Col. (1): Source names are from the General Catalogue of Variable Stars (Kukarkin et al. 1969). ‘‘M’’ indicates Miras, ‘‘SR’’ semiregular variables, ‘‘SG’’ supergiants, and ‘‘OH/IR’’ stars. Cols. (2)  Y  (3): Units of right ascension are hours, minutes, and seconds, and units of declination aredegrees,arcminutes,andarcseconds.Col.(4): V   indicatesstellarvelocity.Col.(5):SpectraltypesarefromthefourtheditionoftheGeneralCatalogueof Variable Stars (Kholopov et al. 1985). Col. (6): Distances without annotation are from trigonometric parallax (Perryman 1997). Col. (7): Periods arefrom Kholopov et al. (1985). a  Cho & Ukita (1995).  b Loup et al. (1993). c Cho et al. (1996b). d Engels (1979). e Marvel (1997). f  Knapp et al. (1982). g Olofsson et al. (1982). h Dickinson et al. (1978). i Marengo et al. (1999).  j Yates et al. (1995). KANG ET AL.362  TABLE  3 Results of S i O  J   ¼ 2  Y  1  Observations: Detected Source(1)Transition(  J   = 2  Y  1)(2) T    A (peak)(K)(3)rms(K)(4) R   T    A  d  v  (K km s  1 )(5) V  LSR  (peak)(km s  1 )(6) V  LSR   V   (km s  1 )(7)Date (Phase)(8)R Aqr .........................  28 SiO  v   = 1 0.54 0.03 1.77   22.2 3.2 990121(0.67)0.73 0.02 4.09   21.7 3.7 990320(0.82)0.94 0.03 5.13   21.7 3.7 990419(0.90)1.18 0.05 5.95   22.6 2.8 990517(0.97)0.73 0.02 3.59   21.7 3.7 991218(0.53)1.07 0.03 4.18   21.7 3.7 000215(0.68)0.84 0.03 4.03   21.7 3.7 000315(0.76)1.17 0.02 5.68   21.7 3.7 000412(0.83)0.87 0.03 4.69   20.9 4.5 000509(0.90)3.65 0.04 11.52   27.0   1.6 001213(0.46)2.11 0.02 7.92   27.0   1.6 010116(0.55)2.24 0.01 8.24   27.0   1.6 010216(0.63)TX Cam .....................  28 SiO  v   = 1 1.62 0.02 5.62 9.8 0.9 990118(0.79)2.18 0.03 9.21 9.8 0.9 990419(0.95)2.17 0.04 10.25 9.8 0.9 990517(0.01)1.19 0.02 5.31 9.8 0.9 991217(0.39)1.26 0.02 5.23 9.8 0.9 000215(0.50)1.32 0.03 6.03 9.8 0.9 000316(0.55)1.11 0.02 5.14 9.0 0.1 000411(0.60)1.79 0.02 7.94 9.0 0.1 000508(0.65)5.30 0.02 28.65 9.8 0.9 001211(0.04)5.62 0.02 29.01 9.8 0.9 010115(0.10)4.32 0.02 24.23 10.7 1.8 010213(0.15)VY CMa ....................  28 SiO  v   = 1 20.43 0.04 264.2 22.4 1.9 99011819.56 0.05 262.17 22.4 1.9 99032011.88 0.04 164.35 22.4 1.9 9904199.60 0.05 132.47 22.4 1.9 99051712.16 0.04 204.83 11.1   9.4 00021512.16 0.04 204.83 11.1   9.4 00031313.61 0.03 206.07 11.1   9.4 00041314.76 0.04 233.68 11.1   9.4 00050819.47 0.04 289.60 10.3   10.2 00121118.34 0.10 278.12 10.3   10.2 01011716.20 0.03 250.12 10.3   10.2 010213 v   = 2 0.45 0.12 1.50 18.9   1.6 010117R Cas..........................  28 SiO  v   = 1 13.17 0.04 45.97 26.2 0.2 990118(0.59)8.96 0.04 31.90 26.5 0.5 990320(0.73)10.53 0.04 33.28 27.0 1.0 990419(0.80)15.57 0.03 54.57 27.0 1.0 990517(0.86)18.27 0.02 66.32 27.0 1.0 991214(0.35)9.28 0.02 36.31 27.0 1.0 000215(0.50)7.38 0.02 31.34 27.0 1.0 000313(0.56)5.18 0.03 25.50 27.0 1.0 000411(0.63)5.92 0.02 32.99 27.9 1.9 000508(0.70)13.23 0.02 42.62 24.2   1.8 001212(0.20)10.25 0.02 33.46 25.0   1.0 010116(0.28)13.14 0.02 29.69 24.4   1.6 010214(0.35) v   = 2 0.16 0.02 0.59 26.2 0.2 990118(0.59)0.32 0.02 0.43 26.7 0.7 990320(0.73)0.10 0.03 0.49 27.9 1.9 990419(0.80)0.14 0.03 0.24 25.3   0.7 990517(0.86)0.07 0.02 0.15 24.4   1.6 000215(0.50)o Cet...........................  28 SiO  v   = 1 4.39 0.03 19.04 46.1   0.2 990118(0.11)2.60 0.03 11.38 47.0 0.7 990320(0.30)1.44 0.02 7.23 46.1   0.2 990419(0.39)0.65 0.02 2.64 47.0 0.7 990517(0.47)5.60 0.03 15.76 46.1   0.2 991214(0.11)4.89 0.03 14.95 47.0 0.7 000218(0.31)2.81 0.04 7.2 47.0 0.7 000315(0.39)3.90 0.02 9.0 47.0 0.7 000412(0.48)6.61 0.02 32.84 47.0 0.7 001212(0.21)6.48 0.02 26.83 46.1   0.2 010117(0.32)5.19 0.02 23.22 46.1   0.2 010214(0.40)  TABLE 3— Continued  Source(1)Transition(  J   = 2  Y  1)(2) T    A (peak)(K)(3)rms(K)(4) R   T    A  d  v  (K km s  1 )(5) V  LSR  (peak)(km s  1 )(6) V  LSR   V   (km s  1 )(7)Date (Phase)(8)   Cyg.........................  28 SiO  v   = 1 12.55 0.05 42.26 10.3   1.7 990118(0.17)12.31 0.05 43.90 10.0   2.0 990320(0.32)4.68 0.02 24.58 11.7   0.3 990419(0.39)3.03 0.02 14.06 12.0 0.0 990517(0.46)3.46 0.01 17.04 10.3   1.7 991218(0.99)6.11 0.03 35.93 15.5 3.5 000215(0.14)5.09 0.03 35.99 14.6 2.6 000313(0.21)4.82 0.03 30.88 12.0 0.0 000410(0.27)5.26 0.02 25.90 12.9 0.9 000508(0.34)2.62 0.02 8.07 9.4   2.6 001212(0.88)2.61 0.02 10.79 9.0   3.0 010116(0.96)3.13 0.02 12.62 9.0   3.0 010213(0.03) v   = 2 0.91 0.02 3.84 6.8   5.2 990118(0.17)1.72 0.06 5.14 8.6   3.4 990320(0.32)0.42 0.02 1.74 8.3   3.7 990419(0.39)0.49 0.02 1.73 8.6   3.4 990517(0.46)0.10 0.03 5.15 17.3 5.3 000215(0.14)2.09 0.02 10.28 17.3 5.3 000313(0.21)1.88 0.02 9.95 17.3 5.3 000410(0.27)0.92 0.02 4.31 17.3 5.3 000508(0.34)0.07 0.01 0.56 7.7   4.3 001212(0.88)0.06 0.01 0.71 3.3   8.7 010117(0.96)W Hya........................  28 SiO  v   = 1 6.48 0.03 40.22 40.6 0.6 990118(0.44)11.09 0.05 39.88 41.4 1.4 990320(0.60)7.79 0.03 33.25 41.4 1.4 990419(0.67)5.38 0.04 23.34 41.4 1.4 990517(0.75)7.18 0.03 30.85 41.4 1.4 991217(0.34)6.03 0.03 33.38 40.6 0.6 000216(0.47)5.49 0.03 35.13 40.6 0.6 000314(0.54)9.24 0.04 46.04 40.4 0.4 000410(0.61)10.62 0.04 45.51 39.7   0.3 000508(0.68)47.59 0.08 168.47 39.7   0.3 001212(0.25)32.94 0.02 106.92 39.7   0.3 010115(0.34)26.13 0.03 84.74 39.7   0.3 010213(0.42)R Leo .........................  28 SiO  v   = 1 1.71 0.02 10.0 4.6 4.1 990118(0.47)1.87 0.03 10.52 0.3   0.2 990320(0.66)2.86 0.03 12.53 1.2 0.7 990419(0.76)3.23 0.03 13.65 1.2 0.7 990517(0.85)6.86 0.03 22.66 0.3   0.2 991217(0.53)6.54 0.02 29.57   2.3   2.8 000215(0.73)6.01 0.03 28.66   1.4   1.9 000313(0.81)6.28 0.02 29.12 0.3   0.2 000410(0.90)4.77 0.03 22.68   2.3   2.8 000508(0.99)7.19 0.02 25.69   1.4   1.9 001211(0.69)6.78 0.03 21.51   2.3   2.8 010115(0.79)10.18 0.02 29.87   2.3   2.8 010213(0.89) v   = 2 0.44 0.02 0.79   2.3   2.8 000215(0.73)0.30 0.02 0.6   2.3   2.8 000313(0.81)0.09 0.02 0.13   2.3   2.8 000410(0.90)0.10 0.01 0.84   2.3   2.8 001211(0.69)WX Psc......................  28 SiO  v   = 1 0.77 0.02 2.56 9.4 1.4 9901180.97 0.02 4.11 9.4 1.4 9903200.88 0.02 3.11 8.6 0.6 9904190.85 0.02 3.44 9.4 1.4 9905170.71 0.03 3.37 7.7   0.3 9912170.76 0.02 3.44 7.7   0.3 0002180.68 0.02 2.91 7.7   0.3 0003140.74 0.02 3.18 7.7   0.3 0004111.19 0.02 3.65 7.7   0.3 0012121.25 0.02 4.54 8.0 0.0 0101161.26 0.03 5.48 8.0 0.0 010216
Recommended
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x